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ABSTRACT

This paper contains four original contributions to numerical field
modeling with the TLM method:

1. The formulation of a 3-D “Johns Matrix” (or Numerical Green’s
Function) for wideband non-TEM absorbing boundary condi-
tions using the 3-D Condensed TLM node.

2. Use of tapered “Johns Matrix” (or Numerical Green’s Function)
for the improvement of the return loss of frequency dispersive
absorbing boundaries.

3. A recursive algorithm for wideband non-TEM absorbing bound-
ary modeling.

4. A pseudo-parallel iteration scheme for the simultaneous process-
ing of TLM substructures.

These procedures are essential for efficient time domain model-
ing of 3-D waveguide discontinuities of arbitrary geometries. Their
application saves considerable computer run time and memory when
compared with conventional TLM analysis.

1. INTRODUCTION

The Transmission Line Matrix (TLM) method has been used
since 1971 for the analysis of complex microwave structures. It is

a time domain numerical method in which both space and time are .

discretized [1}-[2]. Either shunt or series connection of transmission
lines can be used for 2-D analysis. Recently, we have developed sev-
eral new concepts and procedures to speed up 2-D TLM modeling
[3]. To analyse 3-D problems, the expanded node and asymmetri-
cal condensed node [2] have been in use for some time. The former
is topologically complicated because of the spatial separation of the
field components. The latter defines all six field quantities at sin-
gle points in space but has the disadvantage of being asymmetrical.
Recently, a symmetrical 3-D condensed node (shown in Fig. 1) has
been developed by P. B. Johns [4]. This node avoids the above prob-
lems and is more accurate than the other mesh schemes. The work
presented in this paper is therefore based on this condensed node.

Sofar, there have been no reports on the computation of mi-
crowave scattering parameters with this node. To extract the scatter-
ing para-meters over a wide range of frequencies from a single TLM
simulation, we must model wideband absorbing boundaries in the
time domain. Without them, the impulse excitation capability which
is one of the main assets of the TLM method, cannot be exploited.

Furthermore, the wideband absorbing boundaries must be of high:

quality since the Fourier transform of time domain results is very
sensitive to imperfect boundary treatment. We have implemented
wideband absorbing boundary conditions using the time domain Di-
akoptics approach [5].

2. MODELING OF ABSORBING BOUNDARY
CONDITIONS

Our objective is to compute the scattering parameters of a 3-D
discontinuity or a set of discontinuities in a waveguiding structure.
To this end, we must compute the incident, reflected and transmitted
fields at the reference planes indicated in Fig. 2. We assume that
only the dominant mode of the embedding structure exists at these
reference planes over a given frequency band. The space between the
two reference planes is modeled by a 3-D TLM condensed node mesh.
The absorbing boundary conditions must be implemented at the ref-
erence planes. These must simulate the extension of the waveguide
to infinity away from these planes. To achieve this we proceed in two
steps:
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Fig. 1 : Three-Dimensional Condensed TLM node developed by Johns [4]
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Fig. 2 : Discontinuity in a Waveguide Section

a) We compute the impulse response or numerical Green’s function
at the input of a very long waveguide section, and stop the com-
putations before the reflections from the far end return to the
reference plane. For example, for a computation covering 2000
iterations, we need to discretize a2 waveguide section which is 500
Al long (because the velocity of waves on the TLM mesh is half
the velocity of pulses on the individual mesh transmission lines).
This numerical Green’s function is kept in store.

We then discretize the structure (shown in Fig. 2) between the
reference planes, excite it at one end, and convolve the impulses
emerging from these planes with the numerical Green’s functions
computed above.

These two procedures are explained in detail below.

b

~

2.1 Computation of Impulse Response (Johns Matrix)
of a Long Waveguide
A long section of waveguide is discretized with 3-D TLM con-

densed nodes. Note that for TE)q mode propagation, the pulse values
on branches 6, 10, 2 and 9 of condensed nodes are always zero (be-
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cause E, and E, are zero). Hence we have non zero pulse values only
on the remaining 8 branches. Furthermore, since there is no variation
along y, we need to take only one node in the y-direction. We inject
impulses (whose magnitudes vary as sin(7z/a) along the z-direction)
into branch 3 of all the nodes along the input reference plane. This
will cause impulses separated by two times the iteration time interval
to flow in streams out of the branch 3 of all the nodes along the input
reference plane of this structure. These impulse functions result from
the scattering at the nodes and boundaries of the structure, and can
be interpreted as a Green’s function in numerical form. We store the
impulses on branch 3 of condensed node in the ceriter of the waveg-
uide cross-section. We call this numerical Green’s function a “ Johns
Matrix ” in honour of the late P. B. Johns, pioneer of TLM and time
domain diakoptics. Note that the Johns Matrix is computed only
once and stored.

2.2 Convolution with Impulse Response Johns Matrix)

We excite the circuit (shown in Fig. 2) at branch 3 of all the
nodes along the input reference plane with impulses whose mag-
nitudes are spatially distributed according to the dominant mode.
These impulses are scattered at nodes and boundaries and reach,
after some time, the input and output reference planes. We store
the impulses arriving on branch 3 of the center node on the input
reference plane and branch 11 of the center node on the output refer-
ence plane. Then the reflected impulse voltages on these branches are
computed by convolving the incident impulses with the Johns Matrix
computed previously:

k
T(k) =D T(R) x Vi (k= &) )

k=0

k
VE(ky =Y J(K) x V3(k — k') 2)
k=0

where J is the Johns Matrix.

Since we know the transverse field distribution of the propagating
mode (e.g. variation for the TE1o mode in rectangular waveguides is
sin(wz/ a%), the reflected impulses at the other nodes in the reference
planes can be calculated from those at the center.

Following the above approach, we have computed the reflections
of two absorbing boundaries separated by a WR28 waveguide sec-
tion (about 60 Al long). The magnitude of reflections obtained as

%‘%g—;i is shown in Fig. 3. It varies from 6 to 2 percent over the

operating band of the waveguide. The S-parameters of a symmetrical
inductive iris (of gap width equal to 3.46 mm) in a WR28 waveguide
computed with these absorbing boundary conditions are compared
with those computed using Marcuvitz’s [6] in Fig. 4. Note the rip-
ple in the TLM results, especially in the phase characteristics of the
S-parameters. Hence we conclude that the quality of the absorbing
boundaries described by the Johns matrix of a long section of a uni-
form guide is not good enough for S-parameter extraction. In the
following, we show how these boundary conditions can be improved
by “tapering” the Johns Matrix response in the time dimension.

3. TAPERED IMPULSE RESPONSE OR JOHNS
MATRIX

In the case of 2-D TLM absorbing boundary algorithms, we have
noticed that a waveguide termination with gradually increasing losses
(like in practical waveguide terminations) gives better performance
than a long uniform guide. This may be due to the absorption of the
stray reflections due to the finite space and time discretization steps
Al and At. But the present 3-D condensed node cannot account for
losses. However, we know that for homogeneous lossy material, the
output impulse response value kA:» for electric and magnetic fields at
any node and at any instant kAf is related to the value x4, in the
lossless case as follows [2]:

kA: - kAi e(—kzxAl) (3)

where « is the attenuation constant of the mesh lines. Thus by just re-
calculating the impulse response using different attenuation constants
a, different loss conditions can be covered with a single simulation.
Following this argument, the Johns Matrix (J '(k)) for a long uniform
guide with constant loss can be related to the Johns Matrix (J (k)
for a long lossless uniform guide as follows:

J'(k) = J(k) e(-FaaD )
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Fig. 3 : Reflection Characteristics of Absorbing Boundaries (WR 28)
represented by Regular and Tapered Johns Matrices.
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Fig. 4 : S-parameters of an Inductive Iris computed with regular
Johns Matrix Absorbing boundaries
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But to keep the reflections very small over a large bandwidth,
the loss must increase slowly along the length of the waveguide. An
alternative but equivalent solution is to increase a with time. We
found that by exponentially “ tapering ” the Johns Matrix (J(k)) of
the long uniform guide, this requirement can be met. The tapered

Johns Matrix {J'(k)) can be written as

T (k) = J(k) et~ Zhrr o) ®)
where a(k') is
a(k') = age (& in(as/an) ©

a; is the attenuation constant for k=1 (i.e. first iteration) and a;
the attenuation constant for k=NI, the total number of terms in the
Johns Matrix. We have optimized the values of a; and a2 to get
very small reflections over the operating bandwidth. The computed
reflections of the two opposing absorbing boundaries separated by
a WR28 waveguide section (about 60 Al long) are plotted in Fig.
3 for different combinations of a; and as. It can be seen that m
some cases, the reflections are less than one percent in the operating
frequency band.

Using these absorbing boundary conditions, we have computed
the S-parameters of a symmetrical inductive iris (of gap width equal
to 3.46mm) in a WR28 waveguide. Results (shown in Fig. 5) compare
well with those given in [6], and no ripple can be detected in both
magnitude and phase. Also tapering leads to a considerable reduction
in the size of the Johns Matrix (from 2000 values in the regular Johns
Matrix to about less than 1000 values in the tapered Johns Matrix).
Hence the time taken for the convolution using eqns. (1) and (2) 18
also reduced.

4. RECURSIVE MODELING OF ABSORBING
BOUNDARIES

The generation of Johns Matrix for absorbing waveguide bound-
aries has been discussed in section 2.1. This generation scheme re-
quires a complete analysis of a big TLM mesh of length NAl; a very
time-consuming process. We have found a much faster way to gen-
erate the Johns Matrix for an absorbing boundary by exploiting the
fact that the Johns Matrix has a time dimension, i.e. is generated
in discrete time step increments. In the following, we show how the
new method works in the two-dimensional TLM case.

_ Let us assume for the moment that the Johns Matrix J[n] of a
wideband waveguide matched load is already available. The impulse
response of an nAl long waveguide section, which is terminated with
that Johns Matrix, would itself be the same Johns Matrix. (See
Figure 13‘) This recursive property allows us to generate the unknown
Johns Matrix in the following way.

Since the excitation signal reaches the end of the waveguide sec-
tion with a delay of nAt, the convolution process is shifted in time
by that amount. Furthermore, the impulse response of the short
waveguide section is identical to that of a long section for the first 2n
iterations. Hence, we can build the terminating Johns Matrix dur-
ing the iteration process by simply transfering each impulse from the
removed branch to the load side to be convolved with the incident
impulses after a delay of nAt. This is accomplished by assigning the
impulse response R[n] to the Johns Matrix J[n] after each iteration,
or simply by overlapping the memory area of the two matrices. This is
a self-generating recursive algorithm. The above analysis also shows
that the length of the TLM mesh for the Johns Matrix generation
can be as short as 1-Al. The evolution of such a time-varying Johns
Matrix is shown in Figure 7. A comparison of the Johns Matrices
generated by the old and new methods is shown in Figure 8.

5. PSEUDO-PARALLEL ITERATION ALGORITHM

The TLM algorithm is based on Huygens’s principle and de-
scribes a parallel scattering phenomenon|[2]. Because of the sequential
computation in commonly available computers, the TLM algorithms
were designed for iteration in a sequential manner. Such an algorithm
is given in [2]. Not only fails this algorithm to take advantage of the
parallel scattering property of the TLM method, but it also imposes
a rigid order onto the co-ordinates of the computation domains, es-
pecially when the simulated structure involves inhomogeneous mate-
rial. This is a serious drawback in designing a user-friendly program
because the user does not want to keep track of the order of the
computation domains.
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Fig. 5: S-Parameters of an Inductive Iris computed with tapered
Johns Matrix Absorbing Boundaries
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Fig. 6 : New Johns Matrix generation scheme. The length of the 2-D
TLM mesh can be as sgort as 1-Al. An undefined Johns Matrix is
used to terminate the mesh. The Johns Matrix is then built during
the iteration process by simply transfering each impulse from the
removed branch to the load side to be convolved with the incident
impulses after a delay of 1- At,
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Fig. 7 : The evolution process of the time-varying Johns Matrix.

The first 5 terms are shown. R[n}] is the impulse response at
t=n atwhich is equal to J[n].
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Fig. 8 : A comparison of the Johns Matrices generated by the old and
new methods. The first Johns Matrix (top) is generated by using the
old method. Because the structure used is only 100- 1 long, only the
first 200 terms of the Johns Matrix are correct. The second Johns
Matrix (middle) is generated by using the new recursive method. The
graph at the bottom depicts the difference (in percent) between the
two Johns Matrices.

664

To alleviate these problems, we have developed a pseudo-parallel
iteration algorithm which allows us to input the computation domains
in an arbitrary order. No sorting is required before performing the
iteration process. This algorithm partitions the TLM mesh into a
number of computation domains according to the input data, saves
the impulse values entering each domain and then performs the tra-
ditional sequential iteration process within the domain. In a parallel
computer, iteration can be performed in parallel over a number of
computation domains. Therefore, as long as the size of the computa-
tion domains is approximately the same, and if the total number of
computation domains is an integer multiple of the number of proces-
sors in the computer, this algorithm can fully exploit the power of a
parallel computer.

6. CONCLUSION

We have developed and demonstrated a very efficient numerical
model for wideband non-TEM absorbing boundaries for 3-D TLM,
having less than one percent reflections over an entire waveguide
operating band. It allows us to extract the scattering parameters
of arbitrarily shaped three-dimensional discontinuities in waveguides
from a single TLM simulation. The recursive procedure and pseudo-
parallel iteration algorithm have also been in the latest version of
our 2d-tlm simulator. The recursive Johhs Matrix generation algo-
rithm allows very easy and fast modeling of matching boundaries.
The pseudo-parallel iteration algorithm allows the user interface to
be made more user-friendly than before; the user can now input com-
putation domains in any order and make changes at any time. All
innovations presented in this paper represent considerable improve-
ments over previous TLM procedures.
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